Sensor Housing of Explosion Proof Gas Detector

Petrochemical Industry Explosion Proof Gas Detector Application of Sintered Metal Filters


Gas Detector Sensor Housing OEM Manufacturer 


In the petrochemical industry, the production of certain special products involves handling flammable

and explosive gases, making the use of explosion-proof equipment crucial. To mitigate the risk of explosions

and fires from these volatile gases, various types of explosion-proof equipment and devices have been

developed. These play a critical role in maintaining safety in this high-risk environment.


One of the core components is the sensor. However, the function of the protective head of the sensor

is particularly important. We specialize in the production of sensor heads for customized aerators.

The Main Functions are:  

1. Protect the sensor from moisture, pollution, and failure

2. Flammable and explosive gases can effectively pass through the protective head,

    allowing the sensor chip to sense danger 


For HENGKO, Professional Manufacturer and OEM, Custom Variety Porous Sintered Metal Sensor

Housing / Probe for the Gas Explosion-Proof


You Can Custom as Follow Details of Sensor Housing for Explosion Proof Gas Detector :

1.  Materials:  Can choose Normal Stainless Steel, 316L Stainless Steel, Bronze etc as your Gas Explosion-Proof request 

2.  Pore Size:    Custom Different Pore size of the sintered metal filters 

3.  Size and Design:  Can full custom and manufacture as your design draw and size 


What kind of Gas do your Explosion Proof Gas Detector will detect ?  

You are welcome to contact us and hear the professional idea from our R&D Team and

give you best and fast solution for the housing design. 

You can contact us by email or send inquiry to our contact us page. 


contact us icone hengko




Main Features of  Gas Sensor Housing

The housing of a gas sensor is an important component that helps protect the sensor and its associated circuitry from environmental factors, while providing an enclosure that allows specific gas(es) to reach the sensor for accurate detection. The main features of a gas sensor housing typically include:

1. Material:

    The housing is often made from materials that are resistant to corrosion and other forms of damage that might be caused by gases and other environmental factors. These materials could include different types of plastics, metals like stainless steel, or specialized materials for harsh environments.

2. Gas Inlet and Outlet:

    The housing will typically have a gas inlet and an outlet. These allow the target gas to enter the housing and reach the sensor, and then leave the housing. The design of these inlets and outlets can be crucial to ensuring accurate sensor readings.

3. Protection against Environmental Conditions:

    The housing design usually incorporates features that protect the sensor from dust, humidity, extreme temperatures, and other environmental conditions that might interfere with the sensor's operation or damage it. This could involve the use of gaskets, seals, or other protective measures.

4. Mounting Mechanisms: 

    Depending on the application, the housing might include specific features for mounting the sensor in its operational location. This could include screw holes, brackets, or other mechanisms.

5. Electrical Connections: 

    The housing will also have provisions for electrical connections, allowing the sensor to interface with the rest of the system. This could involve terminals, sockets, or cable glands.

6. Miniaturization:

    As technology progresses, there's a continuous drive for smaller and more efficient devices. Miniaturized housings that still provide optimal functionality are an ongoing trend.

7. Explosion-proof Design:

    For sensors used in environments with flammable gases, the housing might be designed to be explosion-proof. This typically involves a robust construction that can contain an internal explosion without allowing it to ignite gases in the surrounding environment.

8. EMI/RFI Shielding:

    Some housings might incorporate shielding to protect the sensor and its electronics from electromagnetic interference (EMI) or radio frequency interference (RFI).

9. Easy Maintenance and Calibration Access:

    The housing is usually designed to allow easy access for maintenance or calibration of the sensor. This could involve removable covers or other access features.

10. Regulatory Compliance:

      Depending on the region and application, the housing might need to comply with specific regulatory standards. This can involve aspects of its design, the materials used, and other factors.



You Can Check Sensor Housing of Explosion Proof Gas Detector Products Details For The Follow Video, 




Where to install for the Gas Sensor Housing ?

Where to install the housing of a gas sensor can significantly depend on the type of gas to be detected, the sensor's specifications, and the specific conditions of the environment in which the sensor is to be used. Nevertheless, there are some general considerations for installing gas sensor housing:

1.Location of Gas Presence: Ideally, the gas sensor should be placed in areas where the gas leak is most likely to occur or where it's expected to accumulate. For example, since propane is heavier than air, sensors detecting propane should be placed low to the ground. Conversely, since methane is lighter than air, sensors for methane should be located near the ceiling.

2.Ventilation: The sensor should be placed in a well-ventilated area to allow the gas to reach the sensor effectively.

3.Avoid Obstructions: The sensor should be installed in a location that is free from obstructions to ensure the gas can freely reach the sensor.

4.Avoid Sources of Heat and Ignition: The sensor should be located away from sources of heat, open flames, or other potential ignition sources, particularly if the sensor is intended to detect flammable gases.

5.Away from Corrosive or Contaminating Substances: The sensor should be positioned away from direct contact with corrosive or contaminating substances, which might interfere with its operation or cause damage.

6.Access for Maintenance: The sensor should be installed in a location that allows for easy access for routine maintenance, calibration, and potential repairs or replacement.

7.Compliance with Regulations: Regulations may require gas sensors to be located in specific locations or require multiple sensors for comprehensive monitoring.

8.Avoidance of Extreme Conditions: Although the housing is designed to protect the sensor, it's still best to avoid placing it in areas of extreme heat, cold, humidity, or areas prone to heavy mechanical impacts or vibrations.

9.Near Potential Sources of Gas Leaks: In industrial environments, the gas sensor should be installed close to potential gas leak sources, such as pipelines, valves, fittings, or storage containers. 




Q1: What materials are typically used for gas sensor housings and why?

A1: Gas sensor housings are usually made from materials that are robust, durable, and resistant to the harsh environments in which they are often installed. These materials can vary but are frequently different types of plastics or metals. For example, ABS plastic is often used due to its strength, resistance to chemicals, and affordability. In more demanding environments, stainless steel or other corrosion-resistant metal alloys might be used because of their durability and ability to withstand higher temperatures and pressures. The material chosen for the housing must also be non-reactive with the gas or gases to be detected to avoid interference with the sensor's operation.


Q2: How does the design of the gas inlet and outlet in the housing affect sensor performance?

A2: The design of the gas inlet and outlet in the housing is vital to the sensor's performance. They are designed to allow the target gas to reach the sensor and any non-target gases or spent target gases to be vented away. If the design is suboptimal, it might limit the rate at which gas reaches the sensor, slowing response time, or it could allow the accumulation of non-target gases, potentially leading to incorrect readings. The size, shape, and location of the inlets and outlets are all aspects that could affect sensor performance.


Q3: What protective measures against environmental conditions are integrated into a gas sensor housing?

A3: Gas sensor housings typically incorporate several protective measures against environmental conditions. This can include seals or gaskets to protect against dust or moisture ingress, heat-resistant materials or insulators to protect against high temperatures, and robust construction to protect against physical damage. In some cases, the housing may also include shielding to protect the sensor and its electronics from electromagnetic interference (EMI) or radio frequency interference (RFI). These protective measures help ensure that the sensor continues to function correctly in various environments and conditions.


Q4: How is the mounting of the gas sensor housing typically managed?

A4: The mounting of the gas sensor housing depends on the application, but it is typically designed to be flexible and adaptable to various scenarios. The housing might include features like screw holes, mounting brackets, or slots for zip ties to facilitate attachment to walls, ceilings, machinery, or other structures. Some gas sensor housings are designed to be easily moved or repositioned, allowing for temporary or portable installations. When mounting the sensor, it's important to ensure that the gas inlet and outlet are not obstructed and that the sensor is positioned correctly for the gas to be detected.


Q5: Why is easy access for maintenance and calibration important in gas sensor housing design?

A5: Routine maintenance and calibration are critical to ensuring that a gas sensor continues to function correctly and provide accurate readings. Over time, sensor performance can drift, or the sensor may become dirty or otherwise require maintenance. Therefore, the housing design often allows for easy access to the sensor for these tasks. This might involve removable covers or doors, access ports, or even modular designs that allow the sensor to be easily removed and replaced. This ensures that the sensor can be easily maintained, leading to better long-term performance and potentially extending the life of the sensor.


Q6: What are some considerations for installing gas sensor housing in potentially explosive environments?

A6: When installing gas sensors in potentially explosive environments, the housing may need to be explosion-proof or intrinsically safe. This typically involves a robust construction that can contain an internal explosion without allowing it to ignite gases in the surrounding environment. It also means that the electronics associated with the sensor must not produce sparks or other ignition sources, even under fault conditions. The housing should be certified to appropriate standards (such as ATEX in Europe or Class/Division standards in the U.S.) to demonstrate that it has been designed and tested to safely operate in these conditions. Always consult the relevant regulations and standards for your region and industry to ensure proper installation and safety.


Q7: What are the key factors to consider when choosing the location to install a gas sensor housing?

A7: When choosing a location to install a gas sensor housing, there are several key factors to consider. First, the sensor should ideally be placed in areas where the gas leak is most likely to occur or where the gas is expected to accumulate. For example, for gases heavier than air, the sensor should be placed low to the ground, and for lighter gases, near the ceiling. The sensor should be in a well-ventilated area, away from obstructions, and distanced from sources of heat or potential ignition. It's also essential to avoid placing it in areas with high humidity, corrosive substances, or extreme conditions unless the housing is specifically designed to withstand these factors. Lastly, ensure that the sensor is installed where it can be easily accessed for routine maintenance and calibration.



Any more questions for the Petrochemical Industry Gas Explosion-Proof Application and Custom Service,

Please feel free to contact us by email or send inquiry as follow form. Thanks! 



Send your message to us:

Write your message here and send it to us