

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180740

Page: 1 of 19

FCC Part 15B Test Report

Report No. : TB-FCC180740

Applicant : HENGKO Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : Humidity temp dew point calibrator meter

Model No. : HK-J8A100 Series

Series Model No. : HK-J8A102, HK-J8A103

Brand Name : HENGKO

Receipt Date : 2021-05-31

Test Date : 2021-06-01 to 2021-06-04

Issue Date : 2021-06-04

Standards : FCC 47 CFR Part 15 Subpart B

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

FC

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-3.0

Tel: +86 75526509301 Fax: +86 75526509195

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing The Configuration of System Tested	
	1.4. Description of Support Units	
	1.5 Description of Test Mode	5
	1.6 Test standards	6
	1.7 Test Facility	6
	1.8 Measurement Uncertainty	6
2.	TEST SOFTWARE	7
3.	TEST SUMMARY	7
4.	TEST EQUIPMENT USED	8
5.	LABEL REQUIREMENTS & STATEMENT REQUIREMENTS	9
6.	CONDUCTED EMISSION TEST	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	11
	6.5 Test Data	11
7.	RADIATED EMISSION TEST	12
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	14
	7.5 Test Data	
8.	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	15
9.	PHOTOGRAPHS - TEST SETUP	
	FACUMENT A DADIATED EMISSION TEST DATA	

Report No.: TB-FCC180740 Page: 3 of 19

Revision History

Report No.	Version	Description	Issued Date
TB-FCC180740	Rev.01	Initial issue of report	2021-06-04
	TOBY OF		
100		COST COST	TOP
	Y TO THE		OD N
ETT.	200	1087	3
	4087		
			The same of the sa

Page: 4 of 19

1. General Information

1.1 Client Information

Applicant	:	HENGKO Technology Co., Ltd.
Address):	No. 51-3, Fuan West Road, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518111 China
Manufacturer		HENGKO Technology Co., Ltd.
Address		No. 51-3, Fuan West Road, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518111 China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Humidity temp dew point calibrator meter
Model(s)	¥ 2.	HK-J8A100 Series, HK-J8A102, HK-J8A103
Model Difference		All above models are identical in schematic, structure and critical components except for different model number, therefore, testing was performed with HK-J8A100 Series only.
Brand Name		HENGKO
Power Supply		DC 9V
Equipment		☐ Class B
Class A Equipment	t: th	e Equipment is not intended primarily for use in a residential
environment.		
Class B Equipment	t: th	e Equipment is intended primarily for use in a residential environment.

1.3 Block Diagram Showing The Configuration of System Tested

1000	EUT	W. A.	(103)
Dis Colors		0.013	
A GEORGE !			
(100)			
		All Control	

1.4. Description of Support Units

	E	quipment Information			
Name	Model	S/N	Manufacturer	Used "√"	
	(11/1)				
	103.7-		100	1	
	Cable Information				
Number	Shielded Type	Ferrite Core	Length	Note	
(1)	V		ann li		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

	For Conducted Test		
Final Test Mode	Final Test Mode Description		
Mode 1	Normal Working Mode		
	For Radiated Test		
Final Test Mode	Description		
Mode 1	Normal Working Mode		

Page: 6 of 19

1.6 Test standards

The objective is to determine compliance with FCC Part 15, Subpart B, and section 15.107, 15.109 rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.7 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

1.8 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$	$\pm 4.0~\mathrm{dB}$ $\pm 3.6~\mathrm{dB}$
Radiated Emission	Level Accuracy: Above 1000MHz	\pm 4.50 dB	N/A
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	\pm 4.40 dB	±5.2 dB

Report No.: TB-FCC180740 Page: 7 of 19

2. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

3. Test Summary

Test Requirement	Test Method	Result
FCC 47 CFR Part 15 Section 15.107	ANSI C63.4-2014	N/A
FCC 47 CFR Part 15 Section 15.109	ANSI C63.4-2014	Pass
	FCC 47 CFR Part 15 Section 15.107	FCC 47 CFR Part 15 Section 15.107 ANSI C63.4-2014 ANSI ANSI ANSI

Analyzer

Report No.: TB-FCC180740 Page: 8 of 19

Page:

4. Test Equipment Used

Conducte	d Emission Tes	s t			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
	Emission Test				Cal. Due
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 01, 2020	Feb. 28, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021

Page: 9 of 19

5. Label Requirements & Statement Requirements

Class B

Label Requirements

Class B digital device subject to certification by the FCC shall carry a warning label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Statement Requirements

The operator's manual for a Class A digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment This equipment generates, uses, and can radiate radio frequency energy and, if not installed and uses in accordance with the instruction manual, may cause harmful interference to radio communications Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * *

If the EUT was tested with special shielded cables the operator's manual for such product shall also contain the following statements or their equivalent: Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

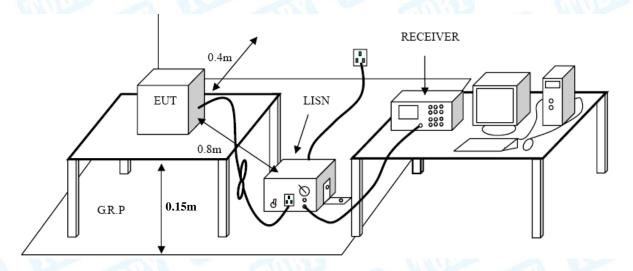
Page: 10 of 19

6. Conducted Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.107

6.1.2. Test Limit


Conducted Emission Test Limit (Class A)

Frequency	Maximum RF Line	e Voltage (dBμV)
(MHz)	Quasi-peak Level	Average Level
0.15~0.50	79	66
0.50~30	73	60

Conducted Emission Test Limit (Class B)

Frequency (MHz)	Maximum RF Line Voltage (dBμV)	
	Quasi-peak Level	Average Level
0.15~0.5	66 ~ 56 *	56 ~ 46 *
0.50~5	56	46
5~30	60	50

6.2 Test Setup

Page: 11 of 19

6.3 Test Procedure

The EUT was placed 0.15 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

The cables shall be insulated (by up to 15 cm) from the horizontal ground reference plane, and shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

6.4 Deviation From Test Standard

No deviation

6.5 Test Data

This test is not applicable.

Report No.: TB-FCC180740 Page: 12 of 19

7. Radiated Emission Test

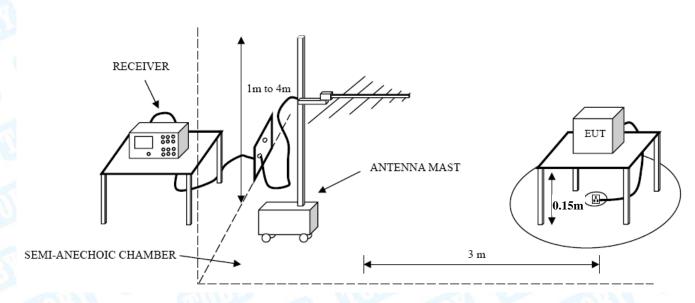
7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.109

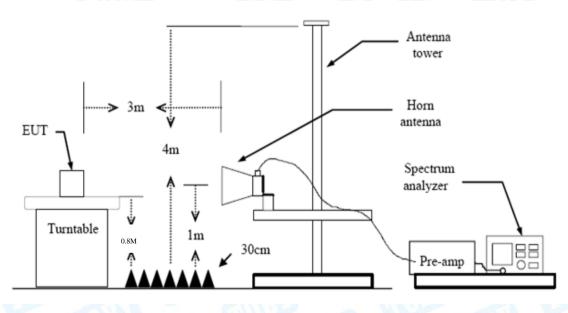
7.1.2 Test Limit

Frequency MHz	Field Strengths Limits dB(μV/m)	
30 ~ 88	49.0	
88 ~ 216	53.5	
216 ~ 960	56.4	
Above 960	59.5	
	on Test Limit (Class B)	
Radiated Emission	on Test Limit (Class B)	
	on Test Limit (Class B) Field Strengths Limits	
Radiated Emission	on Test Limit (Class B)	
Radiated Emission Frequency MHz	on Test Limit (Class B) Field Strengths Limits dB(μV/m)	
Radiated Emissic Frequency MHz 30 ~ 88	Field Strengths Limits dB(μV/m) 40.0	

Frequency (MHz)	Class A Radiated Limit (dBµV/m)- Distance of 3 metres		
	Linear Average Detector	Peak Detector	
>1000	59.5	79.5	
Frequency (MHz)	Class B Radiated Limit (dBµV/m)-Distance of 3 metres		
	Linear Average Detector	Peak Detector	
>1000	54	74	


Note:

Highest Frequency Generated	Upper Frequency of
or Used in Device	Radiated Measurement
Below 1.705 MHz	No radiated testing required
1.705 MHz – 108 MHz	1 GHz
108 MHz – 500 MHz	2 GHz
500 MHz – 1 GHz	5 GHz
Above 1 GHz	5 th harmonic of the highest frequency or 40 GHz, whichever is
	lower.



Report No.: TB-FCC180740 Page: 13 of 19

7.2 Test Setup

Below 1G

Above 1G

Page: 14 of 19

7.3 Test Procedure

The EUT was placed on the top of a rotating table which is 0.8 meters above the ground. EUT is set 3.0 meters away from the receiving antenna that mounted on a antenna tower. The table was rotated 360 degrees to determine the position of the highest radiation, the antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30MHz to 1000MHz. If the Peak Mode measured value compliance with and lower than quasi-peak mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. Measurements shall be made with a Peak and AVG measuring receiver in the frequency range Above 1000MHz.

7.4 Deviation From Test Standard

No deviation

7.5 Test Data

Please refer to the Attachment A.

8. Photographs - Constructional Details

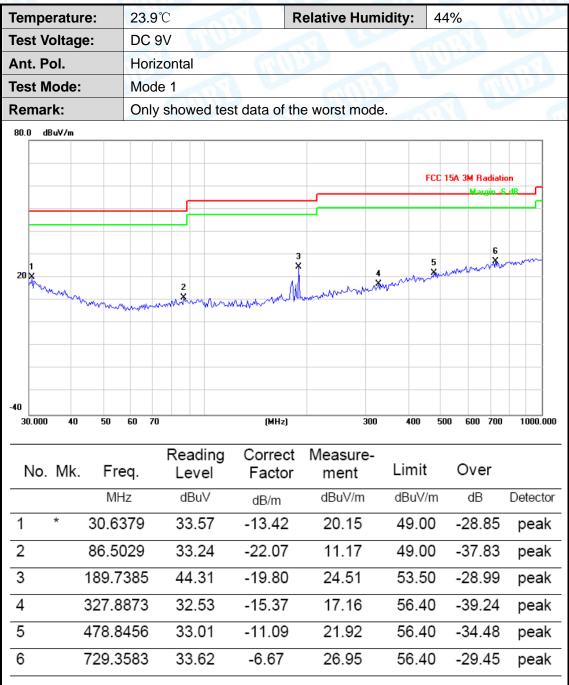
Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Photo 3 Appearance of EUT

Photo 4 Internal of EUT

9. Photographs - Test Setup


Radiated Emission Test Setup

Attachment A--Radiated Emission Test Data

Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

Temperature: 23.9℃ **Relative Humidity:** 44% **Test Voltage:** DC₉V Ant. Pol. Vertical **Test Mode:** Mode 1 Remark: Only showed test data of the worst mode. 80.0 dBuV/m FCC 15A 3M Radiation 20 1 (MHz) 1000.000 30.000 60 70 80 300 500 600 700 Reading Correct Measure-Limit No. Mk. Freq. Over Level Factor ment MHz dBuV dBuV/m dBuV/m dΒ Detector dB/m 17.58 1 32.1795 32.15 -14.5749.00 -31.42 peak 50.4089 33.72 2 -23.1010.62 49.00 -38.38 peak 3 103.0800 33.97 -22.04 11.93 53.50 -41.57 peak 181.9202 32.92 -20.06 12.86 53.50 4 -40.64 peak 5 32.74 289.0021 -16.50 16.24 56.40 -40.16peak 6 558.7302 24.35 33.17 -8.82 56.40 -32.05peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

----END OF REPORT----