

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-EMC180739

Page: 1 of 22

EMC Test Report

Certificate No. : TB210628592

Applicant: HENGKO Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : Humidity temp dew point calibrator meter

Model No. : HK-J8A100 Series

Series Model No. : HK-J8A102, HK-J8A103

Brand Name : HENGKO

Receipt Date : 2021-05-31

Test Date : 2021-06-01 to 2021-06-04

Issue Date : 2021-06-04

Standards : EN61000-6-4:2007+A1:2011

EN IEC 61000-6-2:2019

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

The EUT technically complies with the 2014/30/EU Directive requirements.

Test/Witness Engineer :

Engineer Supervisor

Engineer Manager :

CE

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-075-3.0

Tel: +86 75526509301

Fax: +86 75526509195

TABLE OF CONTENTS

1.	GENERAL INFORMATION	4
	1.1. Client Information	
	1.2. General Description of EUT (Equipment Under Test)	4
	1.3. Description of Operating Mode	5
	1.4. Block Diagram Showing The Configuration of System Tested	
	1.5. Description of Support Units	
	1.6. Performance Criterion	
	1.7. Measurement Uncertainty	
	1.8. Test Facility	
2.	TEST RESULTS SUMMARY	8
3.	TEST EQUIPMENT USED	9
4.	RADIATED EMISSION TEST	10
	4.1. Test Standard and Limit	10
	4.2. Test Setup	10
	4.3. Test Procedure	
	4.4. Deviation From Test Standard	10
	4.5. Test Data	
5.	ELECTROSTATIC DISCHARGE IMMUNITY TEST	11
	5.1. Test Requirements	11
	5.2. Test Setup	11
	5.3. Test Procedure	
	5.4. Deviation From Test Standard	
	5.5. Test Data	
6.	RADIATED ELECTROMAGNETIC FIELD IMMUNITY TEST	13
	6.1. Test Requirements	13
	6.2. Test Setup	13
	6.3. Test Procedure	
	6.4. Deviation From Test Standard	
	6.5. Test Data	
7.	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	15
8.	PHOTOGRAPHS - TEST SETUP	17
ATT	ACHMENT ARADIATED EMISSION TEST DATA (BELOW 1G)	18
	ACHMENT BELECTROSTATIC DISCHARGE TEST DATA	
A TT	ACUMENT C. DE EIEI D STDENICTU SUSCEDTIBII ITV TEST DATA	22

Report No.: TB-EMC180739
Page: 3 of 22

Revision History

Report No.	Version	Description	Issued Date
TB-EMC180739	Rev.01	Initial issue of report	2021-06-04
TUDE	The same		William .
The state of the s		WILLIAM WORK	a Guin
		0033	
a the		WORLD WOODS	
		6000	
		1000 M	3
	4037		
		The same	
	00,0		
			400

4 of 22 Page:

1. General Information

1.1. Client Information

Applicant	:	HENGKO Technology Co., Ltd.
Address		No. 51-3, Fuan West Road, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518111 China
Manufacturer	:	HENGKO Technology Co., Ltd.
Address		No. 51-3, Fuan West Road, Pinghu Street, Longgang District, Shenzhen, Guangdong, 518111 China

1.2. General Description of EUT (Equipment Under Test)

EUT Name		Humidity temp dew point calibrator meter
Model(s)	: \	HK-J8A100 Series, HK-J8A102, HK-J8A103
Model Difference		All above models are identical in schematic, structure and critical components except for different model number, therefore, EMI and EMS testing was performed with HK-J8A100 Series only.
Brand Name		HENGKO
Power Supply		DC 9V

1.3. Description of Operating Mode

To investigate the maximum EMI emission characteristics generated from EUT, the test system was pre-scanning tested based on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	Normal Working Mode

The EUT system operated these modes were found to be the worst case during the pre-scanning test as Following:

ing test as I ollowing.				
For EMI Test				
Final Test Mode	Description			
Mode 1	Normal Working Mode			
	For EMS Test			
Final Test Mode	Description			
Mode 1	Normal Working Mode			

1.4. Block Diagram Showing The Configuration of System Tested

EUT		

1.5. Description of Support Units

	Ec	quipment Informati	on	
Name	Model	S/N	Manufacturer	Used "√"
(A-1)		-11		
		000		
	Ca	able Information		
Number	Shielded Type	Ferrite Core	Length	Note

1.6. Performance Criterion

Criterion A: The equipment shall continue to operate as intended without operator intervention. No degradation of performance of loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended.

Criterion B: After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended.

Criterion C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions.

1.7. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test	Parameters	Expanded Uncertainty (U _{Lab})	Expanded Uncertainty (U _{Cispr})	
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB	±4.0 dB ±3.6 dB	
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	N/A	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	\pm 4.50 dB	±5.2 dB	
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	N/A	
Mains Harmonic	Voltage	±3.11%	N/A	
Voltage Fluctuations & Flicker	Voltage	±3.25%	N/A	

Report No.: TB-EMC180739

Page: 7 of 22

1.8. Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation (A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. TEST Results Summary

	EMISSION	
Description of test items	Standards	Results
Conducted disturbance at mains terminals	EN 61000-6-4: 2007+A1: 2011	N/A
Radiated Disturbance	EN 61000-6-4: 2007+A1: 2011	Pass
Harmonic current emissions	EN 61000-3-2: 2014	N/A
Voltage fluctuation and flicker	EN 61000-3-3: 2013	N/A
Description of test items	Standards	Results
Description of tost itoms	Standarde	Posulte
Electrostatic Discharge (ESD)	EN 61000-4-2: 2009	Pass
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3: 2006 + A1:2008 +A2:2010	Pass
EFT/B Immunity	EN 61000-4-4: 2012	N/A
Surge Immunity	EN 61000-4-5: 2014	N/A
Conducted RF Immunity	EN 61000-4-6: 2014	N/A
Power frequency magnetic field	EN 61000-4-8: 2010	N/A
Voltage dips, >95% reduction		
Voltage dips, 30% reduction	EN 61000-4-11:2004	N/A
Voltage interruptions	THE MODE	
ALMAN MATERIAL STATES	olicable.	STILLS.

Report No.: TB-EMC180739
Page: 9 of 22

3. Test Equipment Used

Radiation E	mission Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 01, 2020	Feb. 28, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Discharge II	mmunity Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
ESD Tester	TESEQ	NSG437	304	Jul. 07, 2020	Jul. 06, 2021
Radiated Im	munity Test	-	-		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Vector Signal Generator	Agilent	E4438C	US44271917	Jul. 06, 2020	Jul. 05, 2021
Power meter	Agilent	E4419B	GB40202122	Jul. 06, 2020	Jul. 05, 2021
Power Sensor	Agilent	E9300A	MY41496625	Jul. 06, 2020	Jul. 05, 2021
Power Sensor	Agilent	E9300A	MY41496628	Jul. 06, 2020	Jul. 05, 2021
RF power Amplifier	OPHIR	5225R	1045	Jul. 06, 2020	Jul. 05, 2021
RF power Amplifier	OPHIR	5273R	1018	Jul. 06, 2020	Jul. 05, 2021
RF power Amplifier	SKET	HAP_0306G-5 0W	SK20140456	Jul. 06, 2020	Jul. 05, 2021
Antenna	SCHWARZBECK	STLP9128E-sp ecial	STLP9128E s#139	Jul. 06, 2020	Jul. 05, 2021
Antenna	SCHWARZBECK	STLP 9149	STLP 9149 #456	Jul. 06, 2020	Jul. 05, 2021

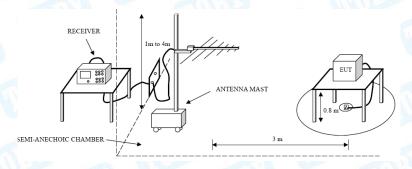
Report No.: TB-EMC180739

Page: 10 of 22

4. Radiated Emission Test

4.1. Test Standard and Limit

4.1.1. Test Standard


EN 61000-6-4: 2007+A1: 2011

4.1.2. Test Limit

Radiated Disturbance Test Limit

	Limit (dBμV/m) Quasi-peak Level		
Frequency			
30MHz~230MHz	50		
230MHz~1000MHz	57		

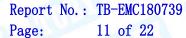
4.2. Test Setup

4.3. Test Procedure

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3m. The table was rotated 360 degrees to determine the position of the highest radiation.

The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

The initial step in collecting radiated emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range.


If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.

4.4. Deviation From Test Standard

No deviation

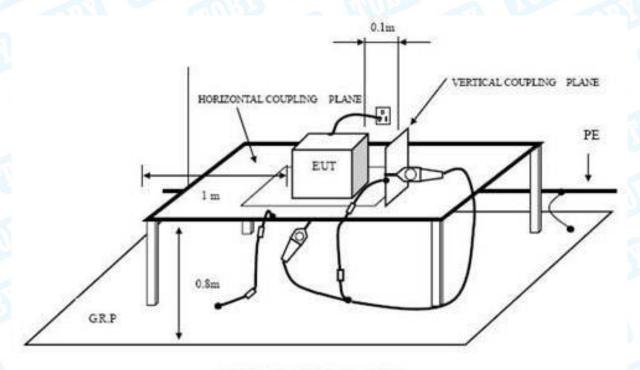
4.5. Test Data

Please refer to the Attachment A.

5. Electrostatic Discharge Immunity Test

5.1. Test Requirements

5.1.1. Test Standard


EN IEC 61000-6-2: 2019 (EN 61000-4-2:2009)

5.1.2. Test Level

Discharge Impedance:	330 ohm/ 150pF		
Discharge Voltage:	Air Discharge: 2kV/4kV/8kV(Direct) Contact Discharge: 2kV/4kV (Direct /Indirect) Positive& Negative Air Discharge: min.20 times at each test point Contact Discharge: min.200 times in total		
Polarity:			
Number of Discharge:			
Discharge Mode:	Single Discharge		
Discharge Period:	1 second minimum		

5.1.3. Performance criterion: B

5.2. Test Setup

INDIRECT DISCHARGE SETUP

Report No.: TB-EMC180739

Page: 12 of 22

5.3. Test Procedure

5.3.1. Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

5.3.2. Contact Discharge:

All the procedure shall be same as air discharge. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

5.3.3. Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

5.3.4. Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

5.4. Deviation From Test Standard No deviation

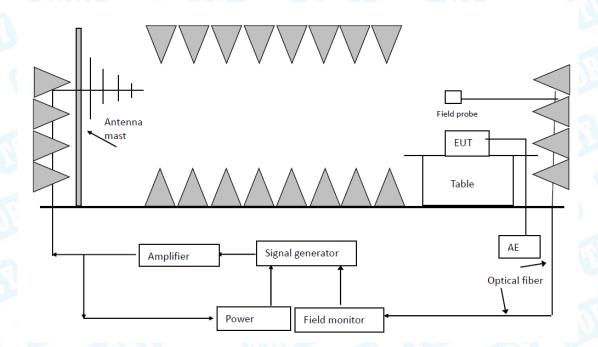
5.5. Test Data

Please refer to the Attachment B.

6. Radiated Electromagnetic Field Immunity Test

6.1. Test Requirements

6.1.1. Test Standard


EN IEC 61000-6-2: 2019 (EN 61000-4-3:2006+A1:2008+A2:2010)

6.1.2. Test Level

Port	Test Specification		
	80-1000MHz		
	10 V/m		
	80 % AM (1kHz)		
	1400-6000MHz		
Enclosure Port	3 V/m		
	80 % AM (1kHz)		
	2000-2700MHz		
	1 V/m		
	80 % AM (1kHz)		

6.1.3. Performance criterion: A

6.2. Test Setup

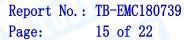
Report No.: TB-EMC180739

Page: 14 of 22

6.3. Test Procedure

The EUT are placed on a table, which is 0.8 meter high above the ground. The EUT is set 3 meters away from the transmitting antenna, which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna is set on test. Each of the four sides of the EUT must be faced this transmitting antenna and measured individually.

In order to judge the EUT performance, a camera is used to monitor its screen.


All the scanning conditions are as following:

Condition of Test	Remark			
Fielded strength	10V/m	3V/m	1V/m	
Radiated signal	Modulated	Modulated	Modulated	
Scanning frequency	80-1000MHz	1400-6000MHz	2000-2700MHz	
Dwell time	3 Sec.	3 Sec.	3 Sec.	

6.4. Deviation From Test Standard No deviation

6.5. Test Data

Please refer to the Attachment C.

7. Photographs - Constructional Details

Photo 1 Appearance of EUT

Photo 2 Appearance of EUT

Report No.: TB-EMC180739 16 of 22 Page:

Photo 3 Appearance of EUT

Photo 4 Internal of EUT

8. Photographs - Test Setup

Radiated Emission Test Setup

Electrostatic Discharge Test Setup

Attachment A--Radiated Emission Test Data (Below 1G)

Temperature:	23.9 ℃	R	elative Humidit	y: 44	%		
Pressure:	1010 hPa	1010 hPa					
Test Voltage:	DC 9V		33	CMI.	1 Total		
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	Mode 1		AHO		1 63		
Remark:	Only showed tes	t data of the	e worst mode.	MA			
80.0 dBuV/m							
				I C1000 C 4	3M Radiation		
				1 61000-6-4	Margin -6	dB	
30			4		6		
		3	M	5 ************************************	man X		
Many 1	2	مسيد اللهاء	Muhandunam				
The same of the sa	man Manus Mary Mary Mary Mary Mary Mary Mary Mary	MMM					
-20							
30.000 40 50	60 70 80	(MHz)	300	400 500	600 700	1000.000	
No. Mk. Fr	Reading req. Level	Correct Factor	Measure- ment L	imit	Over		
M	Hz dBuV	dB/m	dBuV/m d	BuV/m	dB	Detecto	
1 45.3	3755 32.87	-21.54	11.33	50.00	-38.67	peak	
2 75.1	822 33.55	-22.90	10.65 5	50.00	-39.35	peak	
3 139.3	3613 40.36	-22.38	17.98 5	50.00	-32.02	peak	
4 * 203.5	5228 44.17	-19.76	24.41 5	50.00	-25.59	peak	
5 495.9	9344 34.00	-10.60	23.40 5	7.00	-33.60	peak	
6 724.2	2611 33.97	-6.68	27.29 5	7.00	-29.71	peak	
Emission Level=	Read Level+ Cor	rect Factor					

23.9 ℃ Temperature: **Relative Humidity:** 44% Pressure: 1010 hPa DC 9V **Test Voltage:** Ant. Pol. Vertical **Test Mode:** Mode 1 Remark: Only showed test data of the worst mode. 80.0 dBuV/m EN 61000-6-4 3M Radiation Margin -6 dB 30 30.000 60 70 (MHz) 600 700 1000.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dBuV/m MHz dBuV/m dΒ Detector dB/m 31.2893 39.28 -13.91 25.37 50.00 1 -24.63 peak 2 37.0248 36.00 -17.61 18.39 50.00 -31.61 peak 3 78.4133 35.10 -22.60 12.50 50.00 -37.50 peak 4 33.28 184.4898 -19.98 13.30 50.00 -36.70 peak 5 316.5890 32.93 -15.75 17.18 57.00 -39.82 peak 6 513.6331 33.07 -10.05 23.02 57.00 -33.98 peak **Emission Level= Read Level+ Correct Factor**

Attachment B--Electrostatic Discharge Test Data

Temperature : 22.6°C Humidity : 41%

Power supply: DC 9V Test Mode: Mode 1

Required Performance Criteria: B

Air Discharge: ±2/±4/±8kV Contact Discharge: ±2/±4kV

Location	Test Level (kV)	Judgment	Result	
A1	± 2 kV ± 4 kV ± 8 kV	А		
A2	± ZRV ± 4RV ± URV	A	Billion	
C1	± 2 k $V \pm 4$ k V	Α	PASS	
НСР	±4kV	A	Miles of the same	
VCP	± 4 kV	A	a W	

Test Location Photos

C1

A1

A2

Note:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

Report No.: TB-EMC180739 Page: 22 of 22

Attachment C--RF Field Strength Susceptibility Test Data

Temperature : 23.2°C Humidity : 42%

Power supply : DC 9V Test Mode : Mode 1

Required Performance Criteria: A

Position	Frequency Range 1 80~1000MHz		Frequency Range 2 1400~2000MHz		Frequency Range 3 2000~2700MHz		Result
	Front	Α	Α	Α	Α	Α	A
Right	А	A	А	Α	А	Α	DACC
Rear	А	A	Α	A	А	Α	PASS
Left	A	Α	A	Α	Α	Α	

Remark:

- 1) Criteria A: There was no change operated with initial operating during the test.
- 2) Criteria B: The EUT function loss during the test, but self-recoverable after the test.
- 3) Criteria C: The system shut down during the test.

----END OF REPORT----